Beasiswa S1 Universitas Al Azhar Jakarta dan ITB

2.8.14 |


Beasiswa S1 Universitas Al Azhar Jakarta dan ITB

From: Dr. Ary Syahriar

Informasi beasiswa untuk lulusan SMA , Universitas Al Azhar Indonesia (UAI) menyelenggarakan program BEASISWA CORPORATE yang memberikan kesempatan bagi putra-putri bangsa untuk melanjutkan pendidikan tingkat Sarjana S-1. Dengan pendaftaran terakhir hari Jum'at, 8 Agustus 2014.

Selain itu kami juga menyelenggarakan TWINNING PROGRAM DENGAN ITB khusus untuk Fakultas Sains dan Teknologi (T. Elektro, T. Informatika, T. Industri, dan Bioteknologi). Dimana siswa akan belajar 2 tahun di UAI dan 2 tahun di ITB.

Besar harapan kami, program ini juga dapat mendukung rekan-rekan dalam mencerdaskan putra-putri maupun sanak saudara.
Info selengkapnya dan formulir pendaftaran bisa diakses di www.uai.ac.id

Adapun tes gelombang IV periode 1 akan kami buka tgl 12 Agustus 2014.
Mohon bantuan untuk mensosialisasikan program ini ke rekan-rekan lainnya. Kami terbuka jika ada pertanyaan yang ingin disampaikan.

Terima kasih.
Hormat kami,

Biro PPMB Universitas Al Azhar Indonesia.
Hubungi kami di 021-7267272/ 7263344
What's App di 082310658353
Twitter @ DaftarUAI
Www.uai.ac.id

Beasiswa di Nanyang Technological University, Scholarships at Nanyang Technological University

19.6.14 |


PhD scholarships are available at the School of Computer Engineering (
http://www.ntu.edu.sg/SCE), Nanyang Technological University, Singapore,
starting in August 2015. Areas of interest including but not limited to:
Multi-Agents; Modeling & Simulation; Data Mining and Analytics; CAS
Optimization; Computer Graphics, Machine Learning, and any other areas
related to future factories.


Required Qualifications:

(1) Bachelor or Master’s degree in CS or a related discipline;

(2) Excellent programming skills is an asset;

(3) Excellent English writing and speaking skills.



How to apply: Interested applicants please attach your full CV and
transcripts to zhangj@ntu.edu.sg

Info Beasiswa di Austria

30.5.14 |


LogiCS - Doctoral College on Logical Methods in Computer Science

Funded Doctoral Positions in Computer Science

TU Wien, TU Graz, and JKU Linz are seeking exceptionally talented and motivated students for their joint doctoral program LogiCS. The LogiCS doctoral college focuses on interdisciplinary research topics covering

(i) computational logic, and applications of logic to
(ii) databases and artificial intelligence as well as to
(iii) computer-aided verification.

THE PROGRAM

LogiCS is a doctoral college focusing on logic and its applications in computer science. Successful applicants will work with and be supervised by leading researchers in the fields of computational logic, databases and knowledge representation, and computer-aided verification.

FACULTY MEMBERS

M. Baaz A. Biere R. Bloem A. Ciabattoni
U. Egly T. Eiter C. Fermuller R. Grosu
A. Leitsch M. Ortiz R. Pichler S. Szeider
H. Tompits H. Veith G. Weissenbacher

Details are provided on http://logic-cs.at/faculty/

POSITIONS AND FUNDING

We are looking for 1-2 doctoral students per faculty member, where 30% of the positions are reserved for highly qualified female candidates. The doctoral positions are funded for a period of 3 years according to the funding scheme of the Austrian Science Fund (details: http://www.fwf.ac.at/de/projects/personalkostensaetze.html)
The funding can be extended for one additional year contingent on a placement at one of our international partner institutions.

HOW TO APPLY

Detailed information about the application process is available on the LogiCS web-page http://logic-cs.at/phd/

The applicants are expected to have completed an excellent diploma or master's degree in computer science, mathematics, or a related field. Candidates with comparable achievements will be considered on a case-by-case basis. Applications by the candidates need to be submitted electronically.

HIGHEST QUALITY OF LIFE

The Austrian cities Vienna, Graz, and Linz, located close to the Alps and surrounded by beautiful nature, provide an exceptionally high quality of life, with a vibrant cultural scene, numerous cultural events, world-famous historical sites, a large international community, a varied cuisine and famous coffee houses.

Info Beasiswa di University of Michigan-Dearborn

|


Wireless Sensor and Mobile Ad-hoc Networks (WiSeMAN) Research Lab
is looking for two highly self-motivated full-time Ph.D. students to conduct
cutting-edge research in the area of wireless sensor networks in the
Department of Computer and Information Science at the University of Michigan-Dearborn.


The two selected Ph.D. students will be hired to join WiSeMAN Research Lab starting
*September 1, 2014* and work on an NSF-funded project that is related to the design, analysis,
and implementation of sustainable and scalable three-dimensional wireless sensor networks
with a special focus on coverage, connectivity, localization, and geographic forwarding.


To be considered for this Ph.D. position, the interested candidate should have:
   -   Master's of Science in Computer Science, Computer Engineering, or Mathematics
   -   Solid knowledge in the area of networking and/or wireless sensor networks.
   -   Outstanding programming skills.
   -   Strong mathematics background.
   -   Excellent writing and communication skills in English.
   -   High GRE and TOEFL scores.


For full consideration, a *complete application* should be received by *June 15, 2014*,
and should include the following documents:
   -   Application letter.
   -   Detailed curriculum vitae, including a list of publications (if any).
   -   Copy of Master's thesis (if any).
   -   List of graduate courses taken along with grades.
   -   GRE and TOEFL scores


Please submit your *complete application* to Prof. Ammari at
hammari@umd.umich.edu.

Info Beasiswa S3 di Laval University, Canada

|

PhD Student Position: Sparse Representation and Learning in Pattern Recognition
at Computer Science Department, Laval University, Canada

Keywords:  Sparse Representation, Structured Sparsity, Sparse Subspace Learning, Visual Recognition, Feature Selection, Sparse Coding, Sparsity Induced Similarity,
Background:  Sparse representation and learning have been extensively used recently in machine learning, computer vision, pattern recognition, etc. Generally speaking, sparse representation and learning aim to find the sparsest linear combination of basis functions from a complete dictionary. A rational behind this lies in the fact that there is a sparse connectivity between nodes in human brain.
In many signal processing applications (video, image processing, speech recognition, etc.)  the data sets are usually high dimensional and very large. In this context, sparse representation and learning have shown to be promising techniques for addressing them.
Recently, many important theoretical results enriched this area as for instance [1]: (i) the sparsest representation in a general dictionary is unique and can be found by using L1 minimisation [2]; (ii) the sparse representation can be covered by solving the convex programming, if the dictionary has a restricted isometry property [3,4]. Thanks to these important results and their corollaries, sparse representation and learning have extensively been used in many areas including signal processing and applications as speech recognition, machine learning, computer vision, digital multimedia, robotics, etc. A complete review on sparse representation and learning from both theory and applications sides appeared recently [1].
Goal and Objectives:
The goal of this PhD research is to strive to address the following issues:
  • Is the sparsity assumption always supported by the data? Nowadays, compressive sensing has become one of the standard techniques of object recognition. If the sparsity is however not supported by the data, it is not guarantee to recover the exact signal and therefore sparse approximations may not deliver the robustness or performance desired [5]. In this case what sort of acceptable (in terms of computation load) robust method can be?   
  • When the Sparse Representation is Relevant? It is important here to perform an in-depth analysis of sparse representation in pattern recognition and see empirically if this sparse representation improves recognition performance compared to non-sparse representations [6]. To this end, it would be important to take into consideration the way to extract features and to refine them as well as the computational load induced by the all process of sparse representation. 
  • Sparse Representation or Collaborative Representation, which one is the best? Similarly to Zhang’s work [7], it would be appropriate to see if the use of all training samples to collaboratively represent a query sample is much more crucial to sparse representation based classification (SRC). Taking into consideration the fact that the collaborative representation based classification (CRC) plays a more important role than L1-regularization as shown by Zhang et al. [7], it would be opportune to see what new instantiations of CRC (with less computational load than usual SRC) can be proposed.
  • Is sparse representation and learning usefulness in the context of video-based action modeling and recognition? Are ideas from this application fairly general and applicable to other recognition problems? One should here explore the usefulness of sparse representation and learning in the context of video classification, looking particularly at the problem of recognizing human actions-both physical actions and facial expressions [8]. This can be achieved by constructing an overcomplete dictionary using a set of spatio-temporal descriptors (extracted from the video sequences) in such a way that each of these descriptors is represented by some linear combination of a small number of dictionary elements. By doing so, one can achieve a more compact and richer representation than classical methods using clustering and vector quantization. It is also important to see which representation (sparse vs collaborative) is the more convenient for human-action recognition.  Experiments and validation of generalization to other recognition problems can be done on several data sets containing various physical actions, facial expressions and object recognition.

Job Description:

The PhD candidate will focus on signal processing and machine learning. In this context, she will first acquire expertise in different topics such as clustering and classification, Bayesian and generative modelling, signal separation, parameter and state estimation,  time series and space state methods, compression and coding. Then, the PhD candidate is expected to contribute to the advancement of the literature on sparse representation and learning along many different lines: methodological, theoretical, algorithmic and experimental.

Profile:

The applicant must have a Master of Science in Computer Science or Computer Engineering, Statistics, or related fields, possibly with background in Signal Processing and optimization. Good written and oral communication skills in English are required.

Application:

The application should include a brief description of research interests and past experience, a CV, degrees and grades, a copy of Master thesis (or a draft thereof), motivation letter (short but pertinent to this call), relevant publications (if any), and other relevant documents. Candidates are encouraged to provide letter(s) of recommendation and contact information to reference persons. Please send your application to chaib@ift.ulaval.ca. The deadline for the application is June15th, 2014, but we encourage the applicants to contact as soon as possible:

Working Environment:

Benefits:

  • Duration: 36 months – starting date: September 2014, 1st
  • Salary: 19 000$/Year + 3 000$/year (from University)

References:

  1. Cheng, H.; Liu, Z.; Yang, L.; and Chen, X. Sparse Representation and Learning in Visual Recognition: Theory and Applications, Signal Processing, 93, 2013.
  2. Donoho, D. and Elad, M. Optimally Sparse Representation in General (non-orthogonal) Dictionaries via L1 minimization. Proc. Of the National Academy of Sciences, 100(5), 2003.
  3. Candes, E.J.; Romberg, J. K. and Tao, T. Stable Signal Recovery from Incomplete and Inaccurate Measurements. Communications on Pure and Applied Mathematics, 59(8), 2006.
  4. Candes, E. J. and Tao, T. Near optimal Signal Recovery from random Projection: Universal Encoding Strategies? IEEE Transaction on Information Theory, 52(12), 2006.
  5. Shi, Q,; Erikson, A.,; Hengel, A. and Shen, C. Is Face Recognition really a Compressive Sensing Problem? In Proc. of CVPR’11, 2011.
  6. Rigamonti, R.; Brown, M. A. and Lepetit, V.  Are Sparse Representations Really Relevant for Image Classification? In Proc. of CVPR’11, 2011.
  7. Zhang, L.; Yang, M.; and Feng X. Sparse Representation or Collaborative Representations: which Helps Face Recognition? IEEE Int. Conf on Computer Vision, 2011.
  8. Guha, T. and Ward, R. K. Learning Sparse Representations for Human Action Recognition, IEEE Transaction on PAMI, 34(8), 2012.
 

Info Beasiswa S2 dari The European Master's Program in Computational Logic

|


The European Master's Program in Computational Logic

We are glad to announce to you the possibility to join our European Master's Program of Computational Logic. This program is offered jointly at the Free-University of Bozen-Bolzano in Italy, the Technische Universität Dresden in Germany, the Universidade Nova de Lisboa in Portugal and the Technische Universität Wien in Austria. Within this program you have the choice to study at two /three of the four European universities. In addition, you can do your project work at the National ICT of Australia (NICTA). You will graduate with a MSc in Computer Science and obtain a joint degree. Information on the universities and the program including the application procedure is provided here:

http://www.emcl-study.eu/home.html

Language of instruction is English. Tuition fees are 3.000 EUR (for non-European students) and 1.000 (for European students) per year.

A limited number of small scholarships is available.
(see: http://www.emcl-study.eu/fileadmin/emcl_booklet_tree/mss_jc_scholarship_scheme.html
).

If you have any further questions, do not hesitate to contact:

Prof. Dr. Steffen Hoelldobler
International Center for Computational Logic
Technische Universität Dresden
01062 Dresden, Germany

phone: [+49](351)46 33 83 40
fax: [+49](351)46 33 83 42
email: sh@iccl.tu-dresden.de

Related Posts Plugin for WordPress, Blogger...
Get Chitika Premium